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Abstract 
As the number of students and faculty involved in 
online learning in recent decades has increased, 
we recognize that there is a limited understanding 
of how learners react, interact, behave, and are 
served by the various components in the 
information delivery processes. When learning 
online without an instructor present in real-time, 
we need to understand the role of the learners’ 
cognitive load, emotions, and visual attention. This 
paper describes an experiment examining how 
engagement, cognitive load and visual attention 
mediate the effect of data representations and 
highlighting on learning performance. The results 
showed that in addition to tabular representations, 
highlighting significantly increased visual 
attention and decreased cognitive load, which was 
related to better learning performance. 

Background 
Higher education has witnessed a growing number 
of students and faculty involved in online learning 
in recent decades, as well as a larger number of 
courses offered via the Internet. Since the onset of 
the COVID-19 pandemic, online learning has 
become a common means of teaching and 
learning. Several theoretical models have been 
proposed and experiments conducted to 
understand the cognitive process during online 
learning (Mayer, 2005a; Moreno, 2005; Moreno & 
Mayer, 2007; Sweller, 1988). As a result, online 
courses have improved and become more user-
friendly. However, we recognize that current 
instruction is based on limited understandings of 
how learners react, interact, behave, as well as 
how learners are served by the various 
components in the information delivery processes. 
For example, current online learning research has 
focused on the relationship between on-screen 
representations (e.g., text, pictures, and 
animation) and performance or cognitive 
biometrics (e.g., subjective cognitive load, 
subjective emotions, visual attention) (Park, 
Knörzer, Plass, & Brünken, 2015), but ignored the 
role of cognitive biometrics in mediating the effect 
of representations on performance. Continued 

research is needed to understand leaners’ 
cognitive load, emotions, and visual attention, 
most acutely while learning via a computer screen 
when an instructor is not present in real-time. A 
systematic understanding of the effects of 
different representations on cognitive load, 
emotions and visual attention provides design 
insights for building more effective online learning 
systems. In the following sections, we briefly 
review the literature on cognitive load, emotions 
and visual attention, followed by how these 
mediators play important roles in online learning 
systems. We then describe an experiment 
examining how engagement, cognitive load and 
visual attention mediates the effect of data 
representations and highlighting (use of color to 
make text visually salient) on learning 
performances.  

Cognitive Load, Emotions, and Online 
Learning 
 
Cognitive Load. Cognitive load is defined as the 
amount of mental load that working memory 
applies to a specific information processing task 
(Sweller, Van Merrienboer, & Paas, 1998). 
Obtaining an optimal cognitive load is essential for 
successful practices in various fields (Paas, 
Tuovinen, Tabbers, & Van Gerven, 2003). From 
Cognitive Load Theory (CLT), cognitive load consists 
of three additive components: intrinsic, 
extraneous and germane load (Sweller, 1988). 
Intrinsic load refers to the cognitive load that is 
directly connected to the difficulty of the learning 
elements, the total number of elements to be 
learned, the interactivity between the elements, 
and the prior knowledge of the individual. Intrinsic 
load is independent of the instructional design, 
and can only be reduced by breaking learning 
materials into smaller pieces or reducing the 
difficulty of the learning content. Extraneous load 
is influenced by the format and design of the 
instruction. The goal of an effective design of 
instruction is to minimize the extraneous load. 
Germane load is defined as the mental effort 
exerted in the process of knowledge acquisition. 



Oregon State Ecampus Research Unit — Research Fellows   3 

This load is determined by how much attention the 
learner pays to the learning content and is directly 
related to the learning performance. Thus, 
maintaining a certain amount of germane load is 
optimal for learning. The sum of these three loads 
is constrained by the working memory capacity of 
the individual (Paas, Renkl, & Sweller, 2003), which 
is the capacity to store information in mind 
temporarily. Among these three components, 
extraneous load is the only one that can be altered 
by instructional design (Sweller, 1988; Van 
Merrienboer & Sweller, 2005). Given that 
cognitive load is restricted by working memory 
capacity, reducing the extraneous load could 
benefit learning by allocating more working 
memory to the content needing attention. Thus, 
instructional design should aim to reduce the 
extraneous load by leaving out redundant 
information.  
 
To measure cognitive load quantitively, 
considerable research has been conducted to 
understand the relationship between EEG 
(electroencephalogram) -detected brainwaves and 
cognitive load (Gevins, Smith, McEvoy, & Yu, 1997; 
Sterman, Mann, Kaiser, & Suyenobu, 1994).  
Stipacek et al. (2003) demonstrated the important 
role of the alpha band brainwaves in 
understanding the cognitive process. In their 
research, an increased alpha band event-related 
desynchronization (ERD) was observed with 
increasing cognitive load, which indicates that 
alpha ERD can be used to estimate the cognitive 
load one experiences. Gevins et al. (1997) also 
found that the alpha band power detected by EEG 
was lower when the participant was working on 
difficult spatial and verbal working memory tasks, 
compared to easier ones, suggesting that alpha 
band power is negatively associated with cognitive 
load and researchers can estimate cognitive load 
using alpha band power.  Taken together, these 
findings indicate that alpha band power and ERD 
has been well studied in the literature and is 
proven to be effective for the estimation of 
cognitive load. 
 

Emotions and Engagement. Emotion is defined as 
the feeling of bodily changes evoked by the 
interaction with a specific stimulus (James, 1884; 
Park et al., 2015). The emotions of a learner affect 
his or her learning by determining the attitude of 
an individual toward a given subject or classroom 
session (Tan, Mao ,Jiang, & Gao, 2021). Emotions 
can be categorized according to two dimensions 
that influence learning performance: valence, 
whether the emotion is positive or negative, and 
activation, whether the emotion activates or 
deactivates the cerebral cortex into a state of 
general wakefulness, or attention. (Pekrun, 1992; 
Russell, 2003; Encyclopedia Britannica, 2018). 
Emotions can influence performance by affecting 
motivation, self-regulation, learning strategies and 
attention to the learning material (Pekrun, Goetz, 
Titz, & Perry, 2002). Students with positive 
emotions will be good and attentive listeners in 
the classroom, as opposed to students with 
negative or confused emotions whose minds may 
stray away from ongoing learning activities in the 
classroom (Kalyuga, 2009). The reason for this 
assertion is that positive attitudes boost the 
eagerness of a student to acquire new skills, 
knowledge, and expertise from the instructor. 
Some of the essential emotions that support the 
learning process include motivation, interest, 
excitement and engagement (Conrad, 2002; 
LePine, LePine, & Jackson, 2004; O’regan, 2003; 
Zembylas, Theodorou, & Pavlakis, 2008).  
 
Engagement refers to the active involvement in 
learning, or ‘energy in action’, which is recognized 
as one of the key factors that can enhance 
students’ learning performance (Appleton, 
Christenson, Kim, & Reschly, 2006; Blasco-Arcas, 
Buil, Hernández-Ortega, & Sese, 2013; Newmann, 
1992; Taylor & Statler, 2014). It is believed that 
engagement leads to higher academic 
achievement and prevents students from dropping 
classes (Caldwell, 2007; Ing et al., 2015; Lambert & 
Sugita, 2016). A study conducted by Chen and 
Wang (2011) examined whether and how three 
different multimedia learning materials (static-text 
based, video-based and animation-interaction 
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based) influenced student engagement and 
performance. The study revealed that video-based 
materials elicit the most positive emotions and 
thus benefit learning performance (Chen & Wang, 
2011). However, only the overall percentages of 
positive and negative emotion were calculated, 
which cannot account for the changes in various 
emotions across an entire learning process. 
Another study conducted by Um, Plass, Hayward, 
and Homer (2012) noted that learning materials 
designed with bright colors (vs. gray-scale) and 
round (vs. square) and face-like (vs. neutral) shapes 
are beneficial to learning and were considered to 
be positive emotional design. In their study, a 
Positive Affect Scale (PAS) was introduced as a 
subjective way to quantify the positive emotion. 
Given the limitation of subjective measurement, 
our research used an EEG to estimate objective 
measures of emotions to avoid introducing 
significant biases.  
 
Attention and Signaling. The positive effect of 
signaling on learning and multimedia learning 
performance has been examined repeatedly in the 
literature (Chi, Gumbrecht, & Hong, 2007; Van 
Gog, 2014). The signaling principle in multimedia 
learning, also known as cuing principle, refers to 
the fact the learners form a deeper understanding 
of the message presented in a multimedia setting 
when a cue of essential content or highlight of 
crucial structure of the content is given (De 
Koning, Tabbers, Rikers, & Paas, 2007; Mayer, 
2005b). The signaling principle is particularly 
essential for the first step, selecting information, 
in the comprehension of multimedia learning, 
according to the cognitive load theory of 
multimedia learning. The multimedia content 
needs to be attended by the learner before it can 
be processed in working memory (Van Gog, 2014). 
Visually salient content tends to attract more 
attention sooner from novice learners (Lowe, 
1999).  
 
In multimedia learning, the allocation of attention 
largely depends on the design of the stimulus 
material for novices who do not have prior 

knowledge. Processing information that is relevant 
to learning induces higher extraneous cognitive 
load and might hamper learning (Paas & Sweller, 
2014). Thus, having salient features in the stimulus 
can guide the learner to attend to relevant 
information for deeper acquisition of the material. 
Van Gog (2014) also argued that signaling/cuing 
principle is not only crucial for reducing 
extraneous load in the information selecting stage, 
but it might also induce higher germane cognitive 
load through facilitating the understanding of the 
organization or integration of the learning content.  
 
Signaling can be incorporated into different forms 
of the learning content, including text, pictures, or 
both. Text-based signaling has three major 
categories: (1) sentence precedes the learning 
content and highlight the structure (Mautone & 
Mayer, 2001), (2) sentence that guide attention to 
the picture (Hayes & Reinking, 1991), and (3) 
colored text that draws attention to a specific term 
or details in the learning content (Moreno & 
Abercrombie, 2010). Picture-based signaling 
generally relies on the use of arrows, flashing 
elements, change of colors, or inverted contrast. 
These methods make the peripheral content 
invisible and instead highlight the relevant 
information (Amadieu, Mariné, & Laimay, 2011; 
Boucheix & Lowe, 2010; Jamet, Gavota, & 
Quaireau, 2008; Jeung, Chandler, & Sweller, 1997).  
 
Among all the techniques that have been used for 
signaling, highlighting refers to the use of color to 
make text visually salient. This approach has been 
increasingly used to guide the attention of 
students towards a specific area of textual 
contents. Mautone and Mayer (2001) examined 
several signaling techniques and observed that 
performance on a transfer test presented in 
written text improved with signaling while 
learning. During the learning phase, participants 
heard a low tone when a corresponding word was 
highlighted in the signaled group, and their 
performance in answering transfer test questions 
was significantly higher than those in the non-
signaled group. This finding suggests that the 
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pairing of audio and visual forms of signaling can 
enhance transfer test performance. Ozcelik, 
Arslan-Ari, and Cagiltay (2010) studied the effect 
of red-colored narration on both visual behavior 
and learning performance during a task that 
involved both text and spoken narration. The text 
was presented in a red color during the narration 
of the sentence. Participants who studied the 
signaled version of the text outperformed those 
studied the non-signaled version in two different 
measures of learning performance. Like the study 
conducted by Mautone and Mayer (2001), the 
results of this study further indicate that a number 
of signaling methods (sound, color, and 
highlighting) can positively impact learning and 
learning performance. 
 
Learning and Eye Tracking. Another useful 
technique that has been recognized to explore 
cognitive performance in information processing is 
eye-tracking (Duchowski, 2007). Eye movements 
have been shown to explain information 
processing and are related to attention in learning 
(Rayner, 2009; Underwood, 1998). Earlier research 
has revealed that variables in eye-tracking are 
linked with the learning process. For instance, the 
number of fixations is related to the efficiency of 
searching, the duration of fixation is correlated 
with the level of difficulty of the content to the 
viewer, and the pupil size has long been used to 
determine the viewer's cognitive workload (Beatty, 
1982; Hyönä, Tommola, & Alaja, 1995; Rayner, 
1998). 
 
Multiple eye movement variables can detect the 
participant’s cognitive states and provide 
information about cognitive activities. The eye 
activities can be categorized into two main classes: 
voluntary eye movements that are controlled by 
the participant, including fixation and saccade; and 
involuntary eye movements that accompany the 
voluntary eye-movements, for instance, pupil 
dilation and blinking. Fixation refers to the focused 
state of eyes on information over a considerable 
amount of time, larger than 200-300 milliseconds. 
Another voluntary eye movement is saccade which 

is the shift of the eyes between two locations with 
a time range between 30-80 milliseconds. Pupil 
dilation is a pupillary change that can range from 
1.5mm to more than 8mm. Pupil dilation is a 
pupillary response that accompanies effortful 
cognitive processing, and it has long been used as 
an index of cognitive load. Kramer (1991) pointed 
out that task-evoked pupillary response has been 
found to be related to the amount of information 
processed in short-term memory (working 
memory). Blinking refers to the rapid closing of the 
eyelid and is recognized as another critical eye-
tracking metric to reflect the individual cognitive 
load.  
 
Wang, Yang, Liu, Cao, & Ma (2014) confirmed the 
strong correlation between fixation and cognitive 
load. Both fixation count and duration are 
significantly positively related to the cognitive 
demand. Pomplun & Sunkara (2003) investigated 
changes in pupil dilation as task difficulty 
increases. The computer-based task was to 
eliminate a growing size blue circle before it 
reached the maximal size. The blue circle appeared 
with other three elements: blue squares, red 
squares, and red circles. In two instances the items 
would grow in size, and the participant had to look 
at the blue circle and press a designated button to 
eliminate the item. The difficulty level of the task 
was determined by the time interval between two 
emergences of the blue circle. For the easy level, 
the blue circle appeared every two seconds, 
dropping to 200 and 75 milliseconds, respectively 
for medium and hard levels. Results of this study 
indicate that the pupil size is a function of both 
cognitive load and environmental brightness. In 
other words, when the brightness is constant 
across experiments, the cognitive load can be 
computed directly through the pupil size. This 
assertion was further confirmed by Porta et al. 
(2012).  
 
A study conducted by Chen, Epps, Ruiz, & Chen 
(2011) further addressed the usage of eye-tracking 
parameters to measure cognitive load. In their 
research, the participant was required to learn 
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basketball strategies to identify defenders and 
attackers, as well as recall the position of players 
through a computer-based training application. 
The tasks were preset to three complexities by 
adjusting the total number of positions to be 
memorized and the number of defenders/ 
attackers. The required cognitive load was 
assumed to be higher for more complex tasks. All 
four kinds of eye movement (fixation, saccades, 
blinking, and pupil dilation) were significantly 
correlated with cognitive load. The duration and 
rate of fixation indicated that higher effort was 
allocated to more complex tasks. Saccade speed 
and size were also reliable discriminatory 
parameters for the cognitive workload. Finally, 
blink latency, blink rate and pupil size were 
significantly correlated with cognitive load 
variations. In sum, all these parameters are 
positively associated with the cognitive load.  
 
Summary. Based on the extant literature, 
emotions and visual attention might compete with 
cognitive load while participants are learning, thus 
necessitating a balance between the competing 
mediators in instructional design. Therefore, 
positive emotion arousal is necessary in learning, 
but it should be maintained at a reasonable level 
to minimally increase extraneous load and allow 
spaces for germane load to achieve meaningful 
and active learning. Even though the role of the 
cognitive load, emotions and visual attention have 
been addressed in the literature, the trade-off and 
systematic relationship of these three biometrics 
during an online learning session remains opaque. 
Furthermore, cognitive load and emotion have 
mostly been measured by subject instruments 
(questionnaires, self-reports, etc.) rather than 
object measurements (EEG, eye-tracking), which 
might introduce a considerable amount of bias 
into the data. Thus, the joint role of emotions and 
cognitive load is an important area that needs to 
be investigated objectively to better understand 
the relationship between instructional design, 
emotions, cognitive load and learning 
performance. To better contribute to the 
overarching goal of optimally designing online 

learning systems, our study addressed this gap in 
the literature. We examined the relationship 
between instructional design, biometrics, and 
learning performance by determining whether 
biometrics measured using EEG and eye-tracking 
are mediators in the relationship between 
instructional design and learning outcomes.  
 
We hypothesized that: (1) data presented in 
tabular form would significantly decrease the 
cognitive load as well as the engagement a learner 
experiences compared to a graph, and 
consequently yield better performance; and (2) 
text highlighting would significantly increase the 
visual attention towards the Area of Interest (the 
area highlighted that has relevant and important 
information) and decrease the cognitive load, 
thereby fostering learning through selecting, 
integrating and organizing the information. 

Methodology and Results 
We conducted a two-by-two Latin square designed 
experiment to investigate specifically how 
cognitive load and engagement is influenced by: 
(1) highlighting (highlighting relevant information 
vs. no highlighting) and (2) different data 
representation (table or graph) to capture 
information about visual attention as measured by 
an eye-tracker. We used alpha band event-related 
desynchronization (ERD) and theta band event-
related synchronization (ERS) as two estimates of 
cognitive load. Engagement was quantified based 
on the engagement index introduced by Pope, 
Bogart, and Bartolome (1995). An engagement 
index was calculated as the ratio of alpha band 
power over the sum of alpha and beta band power. 
This ratio represents the general arousal level in 
the brain based on alpha band power. 
 
Forty-eight students (25 males, 23 females, age 
ranging between 19 to 40) at Oregon State 
University (OSU) participated in this study. All 
participants were recruited via lists of OSU 
departments and Ecampus, the university’s daily 
online newsletter and flyers distributed around the 
campus. Students enrolled in majors that required 
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nutrition courses and students with prior 
knowledge regarding the nutrition course used in 
the study were excluded. Students came to the 
Human Analytic Laboratory to participate in the 
study. Participation was voluntary, and each 
participant received $30 compensation in cash 
upon the completion of the experiment. Using a 
within-subjects design, 48 participants 
experienced all four treatments from an 
asynchronous general human nutrition (Nutrition 
225) online course. 
 
All participants were tested in experimental 
sessions in the same day. Upon arrival, 
participants were informed about the study by the 
experimenter and provided a written consent 
form. They were asked to express any concern or 
questions about the experiment before starting 
the example session. After the consent form was 
signed, participants were seated in front of the 
monitor within a sound-proof experimental booth. 
The participants were first asked to progress with 
the example slides to become familiar with the 
representations and the pattern of questions. The 

calibration of emotiv EEG headset was performed 
after participants had finished learning the 
example slides and all questions were answered. 
Baseline raw EEG for eye-closed and eye-open 
relax status was recorded after the calibration was 
done. As the EEG baseline recording was finished, 
a calibration of the Tobii X2-30 eye-tracker was 
performed with the Tobii pro studio. The 
participants were then asked to progress with the 
experimental sessions until all sessions were 
completed. 
 
All experimental slides consisted of both a text 
and a data representation, with the text on the left 
illustrating the function and recommended intake 
of a specific nutrient, and the data representation 
showing the foods that have that nutrient and the 
amount of the nutrient. We implemented a table 
and a dot graph as two forms of data 
representation to show four kinds of foods with a 
specific nutrient, the standard serving size and the 
amount of nutrients in one serving size. Figure 1 
illustrates the four representations presented in 
the experiment. 

 

Figure 1. An example of learning materials for four different representations, with different levels of highlighting and 
data visualization: (a) highlighting, table (b) highlighting, graph (c) no highlighting, table (d) no highlighting, graph
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Participants were asked to progress through four 
sessions of slides with six slides in each session. All 
slides were presented on-screen via Tobii Studio in 
the form of a downloaded PowerPoint provided in 
an online module in a learning management 
system. The task was system-paced with each slide 
appearing once for 60 seconds. There was a three-
question retention test following each slide, 
wherein the questions were related exactly to the 
one corresponding slide. One question was to 
examine the learning outcomes (retention) of 
memorizing content in the text, and the other two 
questions were related to learning on the data 
representation. Learning performance was 
measured using the sum of correct responses to 
three questions for all 24 slides tested (score 
ranges between 0 and 3 for a single slide). 
 
We first performed a Fast Fourier Transform(FFT) 
with the original raw EEG data and then calculated 
two frequency domain EEG measures, alpha ERD 
and theta ERS through Matlab, as estimates for 
cognitive load in our model. We extracted data 
between 8-13Hz for the alpha band and 4-7Hz for 
the theta band. ERD and ERS were calculated using 
the following equation: (test band power – baseline 
band power)/baseline band power for each slide. We 
also estimated the engagement participants 
experienced while learning via various learning 
representations. Pope et al. (1995) introduced an 
engagement index and reported that beta/(alpha + 
beta) reflects task engagement best in terms of the 
strength in producing expected feedback (better 
performance). The engagement index = beta/(alpha 
+ beta) has been used effectively by a number of 
researchers and was therefore adopted for this 
study. The EEG frequency bands were set as 
follows: alpha(8-13Hz), beta(14-22Hz) and 
theta(4-7Hz). The 60-second EEG recording for 
each slide was truncated to 20 segments of 20-
seconds with a 2-second moving window. The 
engagement index for a specific slide was 
determined by averaging the index of the 
corresponding segments. As mentioned above, 
eye-tracking has been used to explore cognitive 

performance in information processing 
(Duchowski, 2007). We used the number of 
fixations and total visit duration in the Areas of 
Interest (AOIs) to quantify the visual attention. In 
our study, the AOIs were defined as the area that 
contains information that was tested in the 
retention task.  
 
To examine the effect of highlighting and data 
representation on learning performance and the 
mediating effects of cognitive load, engagement, 
and visual attention, we examined several 
structural equation models with the results shown 
below in Figures 2 and 3.  
 
The model in Figure 2 on page 9 examines the 
effects of data representation on learning 
performance and how cognitive load and 
engagement mediates this relationship. We 
modeled cognitive load as a latent variable, 
estimated through alpha ERS and theta ERD. We 
estimated engagement directly from the 
engagement index defined above. We selected the 
two electrodes located in the prefrontal lobe to 
test this model because the prefrontal area has 
been recognized in the literature as an important 
region of the brain that is sensitive to emotional 
arousal (Robbins, 2000). This model, based on 
electrode AF3, shows that the use of tables (rather 
than figures) increases the cognitive load and also 
increases engagement, and both ultimately yield 
higher scores. This model represented the 
experimental data well with a good Comparative 
Fit Index (CFI) of 0.931 (where CFI > 0.9 is 
recommended; Hu & Bentler, 1999); and RMSEA 
of 0.059 (where RMSEA < 0.08 is recommended; 
Hu & Bentler, 1999). We also examined the model 
above with data from electrode AF4, which was 
consistent overall with the model in Figure 1 and 
showed a similar relationship between the 
independent, mediating and dependent variables. 
However, the AF4 based model failed the indices 
of good model fit (CFI and RMSEA). 
 

 
 



Oregon State Ecampus Research Unit — Research Fellows   9 

Figure 2. The effect of table/graph on learning performance, cognitive load and engagement 

 

Figure 3. The effect of highlighting on learning performance, cognitive load and visual attention 
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Figure 3 on page 9 shows the effect of highlighting 
on learning performance, and how visual attention 
and cognitive load mediates this relationship. We 
modeled cognitive load and visual attention as two 
latent variables, with cognitive load estimated 
using alpha ERS and theta ERD, and visual 
attention estimated using the number of fixations 
and total visit duration on each slide. This model 
yielded a good Comparative Fit Index (CFI) of 
0.998 and a good RMSEA of 0.037. It shows that 
highlighting significantly increased the visual 
attention and decreased the cognitive load. 
Further, having both lower cognitive load and 
higher visual attention yielded significantly better 
learning performance. 

Conclusion and Discussion 
As some researchers have posited, eliciting 
positive emotions usually promotes learning by 
making the instructional material more appealing 
(Um et al., 2012). Heidig, Müller, and Reichelt 
(2015) proposed a concept called Emotional 
Design which advocates the use of visual 
attraction in the design of instructional media to 
elicit positive learning and facilitate learning as a 
consequence. However, emotion is also a potential 
source of extraneous load, and adding components 
that are emotionally attractive but irrelevant or 
unnecessary may hinder learning (Sweller, 1988; 
Sweller et al., 1998). Mayer, Heiser, and Lonn 
(2001) also found that components that elicit 
positive emotions cause the coherence effect, 
wherein learners allocate more cognitive load to 
priming inappropriate schemas as they try hard to 
locate the key points of the learning task. Our 
results align with the coherence effect. From 
Figure 2, we note that presenting data in tables 
creates higher levels of engagement with the 
learner than a corresponding graphic 
representation, as estimated through EEG 
engagement index. Nonetheless, the tables were 
associated with greater cognitive load and 
participants outperformed those learning via the 
graphical representation. That is, increasing the 
engagement of participants increases the 
cognitive load, which at the same time occupies 

more germane load, which together may lead to 
better performance. An increase in the 
representational complexity increases the 
engagement level of the participants, which might 
benefit learning instead of hindering it. When 
diagrammatic elements are not simplified and 
must be processed interactively, rather than 
shown serially or in isolation, the extraneous load 
increases and has the potential to lessen learning 
performance. 
 
In addition to a tabular representation, we find 
that highlighting also enhances the learning 
performance through decreases in cognitive load 
and helps with construct schemata (a cognitive 
structure that organize the information) that 
promotes comprehension. Past research on 
highlighting has noted its effectiveness towards 
learning. The existing literature offers several 
potential explanations for this, including the 
isolation effect which refers to the phenomenon 
that an item isolated against a homogeneous 
background will be more likely to be noticed and 
remembered (Von Restorff, 1933). Chi et al. 
(2007) reported a high rate of fixation on the 
highlighted areas of the text and validated the 
isolation effect. We draw a similar conclusion 
based on a significantly higher number of fixations 
and longer total visit duration in the areas-of-
interest (see Figure 3 - visual attention). This 
isolation effect agrees with the attention-guiding 
hypothesis proposed by Ozcelik et al. (2010) in 
which highlighting increases the cognitive 
processing of specific elements, and these 
increases should be measurable through a long 
time of average fixation or longer total fixations. 
Even though researchers have hypothesized that 
highlighting has an important role in cognitive 
processes and influences cognitive load, there is 
no extant research that quantitatively confirms 
this hypothesis. We examined cognitive load and 
visual attention concurrently and found support 
for the hypothesis that highlighting influences 
cognitive load by isolating the appropriate schema 
for learners to prime, increases the visual attention 
and decreases the cognitive load and eventually 
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promotes learning performance. The proper use of 
highlighting (text highlighting, underlines, or 
bolded text) is beneficial to learning by decreasing 
the extraneous load, which allows learners greater 
capacity for learning the content itself. 

Future Research 
Although the current study deters the use of some 
components that elicit higher engagement, we 
should not ignore the general role of engagement 
and other positive emotions in learning. That is, 
cognitive load and emotions are two aspects 
associated with cognitive processing that should 
be considered together at the instructional design 
stage. We propose that there is a point in which 
cognitive load and emotion might be balanced 
such that both positive emotion and a reasonable 
cognitive load are obtained, thereby optimizing 
learning performance. One might apply emotional 
design to promote learning while maintaining a 
comparatively low extraneous load in a low 
cognitive load condition (easier tasks; tasks that 
demand less effort). For specific learning content, 
such a tradeoff point likely varies. Since the 
content itself has an associated intrinsic load, a 
material with a lower intrinsic load would allow 
more space for emotional eliciting elements in the 
extraneous load. For instance, if we are presenting 
the participants with slides having only one object 
under a low cognitive load condition (e.g., learning 
the meaning of psychological terms, such as 
“schema”), the germane load is low for 
comprehending a single word, and pictures or 
animation that introduces higher extraneous load 
would have minor impact on the learning 
outcomes. Investigating these trade-offs between 
cognitive load and emotions for courses, along 
with complexity levels, would enhance our 
understanding of the relationship between 
emotions and cognitive load in online learning.  
We demonstrated how one emotion (engagement) 
mediates the learning process via cognitive load, 
but other emotions, including excitement and 
interest, remain to be investigated. If well 
designed, it is possible to engage participants with 
potentially more complex stimuli (e.g., video, 

colorful pictures) by decreasing abundant 
information and highlighting the key structures. 
This could help the learner to more quickly build a 
schema and maintain some working memory 
capacity. In this study, both data and text were 
processed via the visual channel; future research 
could take the verbal channel of background 
spoken narration in human information processing 
into consideration. Allocating some of the content 
onto the verbal channel will decrease the amount 
of information to be processed in the visual 
channel. This can vacate working memory of the 
emotion eliciting components in emotional design, 
if needed. An examination of this hypothesis may 
reveal whether such design elements are separable 
or fundamentally linked.  

We also found that highlighting is effective for 
promoting learning, by itself or alongside other 
design elements (e.g., simplified data 
representations). Highlighting, seen as emotional 
eliciting elements by some researchers, could 
increase the cognitive load instead when an 
attractive design elicits positive emotions. Further 
investigations are needed determine how the 
effect changes when highlighting is working with 
other design elements. 

Other Research Projects Derived from 
this Study 
Key elements of this study have been instrumental 
in developing a currently funded NSF project 
entitled, FW-HTF-RM: Collaborative Research: 
Assistive Intelligence for Cooperative Robot and 
Inspector Survey of Infrastructure Systems (AI-
CRISIS) D. A. Nembhard (PI), $332,000, ECCS-
2128561, Sept. 2020 - Sept. 2023. The purpose of 
the project is to design efficient and effective 
training for inspectors to conduct drone-assisted 
bridge inspections. We are using biometric sensors 
including eye-tracking and EEG. The design of the 
training has several common aspects with more 
general online training, including questions related 
to the cognitive load requirements on the learner 
(i.e., inspector). Several of the broad goals of this 
Ecampus project and the NSF project are closely  
aligned, with the lessons learned from the former 
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informing the development of the latter. It should 
also be noted that inspector performance on the 
project is quite closely tied with the efficacy of the 
training system, and will thus have a relatively 
immediate impact on practice.  
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